import torch import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torch.utils.data import torch.nn as nn import torch.nn.functional as F
transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=8, shuffle=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=8, shuffle=False)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def imshow(img): img = img / 2 + 0.5 npimg = img.cpu().numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() plt.pause(0.5) plt.close()
dataiter = iter(trainloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images, padding=2))
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, (5, 5)) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, (5, 5)) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10)
def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
net = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
net.to(device)
plt.ion() loss_data = [0] times = [0] for epoch in range(3):
running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) optimizer.zero_grad()
outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step()
running_loss += loss.item() if i % 2000 == 1999: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0
with torch.no_grad():
if i % 100 == 0: loss_data.append(loss.cpu().tolist()) times.append(times[len(times) - 1] + 1) plt.cla() plt.plot(times, loss_data, 'r-', lw=1) plt.ylabel('Loss') plt.title('loss=%.4f step=%d' % (loss.cpu(), i)) plt.pause(0.1)
print('Finished Training')
dataiter = iter(testloader)
images, labels = dataiter.next()
images, labels = images.to(device), labels.to(device)
imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
correct = 0 total = 0
with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total))
class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10))
with torch.no_grad(): for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1
for i in range(10): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i]))
|